http://ghytaprsd.blogspot.comTumbukan
- Saturday Nov 15,2008 10:05      AM
- By san
- In Impuls dan Momentum
Pengantar 
Dalam kehidupan sehari-hari, kita biasa menyaksikan benda-benda saling bertumbukan. Banyak kecelakaan yang terjadi di jalan raya sebagiannya disebabkan karena tabrakan (tumbukan) antara dua kendaraan, baik antara sepeda motor dengan sepeda motor, mobil dengan mobil maupun antara sepeda motor dengan mobil. Demikian juga dengan kereta api atau kendaraan lainnya. Hidup kita tidak terlepas dari adanya tumbukan. Ketika bola sepak ditendang David Beckham, pada saat itu juga terjadi tumbukan antara bola sepak dengan kaki Abang Beckham. Tampa 
Pada pembahasan mengenai momentum dan impuls, kita telah meninjau hubungan antara momentum benda dengan peristiwa tumbukan. Hukum Kekekalan Momentum yang telah diulas sebelumnya juga selalu ditinjau ketika dua benda saling bertumbukan. Pada kesempatan ini kita akan mempelajari peristiwa tumbukan secara lebih mendalam dan mencoba melihat hukum-hukum fisika apa saja yang berlaku ketika benda-benda saling bertumbukan.
JENIS-JENIS TUMBUKAN
Perlu anda ketahui bahwa biasanya dua benda yang bertumbukan bergerak mendekat satu dengan yang lain dan setelah bertumbukan keduanya bergerak saling menjauhi. Ketika benda bergerak, maka tentu saja benda memiliki kecepatan. Karena benda tersebut mempunyai kecepatan (dan massa 
Nah, pada kesempatan ini kita akan mempelajari jenis-jenis tumbukan antara dua benda dan mencoba melihat hubungannya dengan Kekekalan Momentum dan Kekekalan Energi Kinetik. Napa 
Secara umum terdapat beberapa jenis tumbukan, antara lain Tumbukan lenting sempurna, Tumbukan lenting sebagian dan Tumbukan tidak lenting sama sekali.
TUMBUKAN LENTING SEMPURNA
Tumbukan lenting sempurna tu maksudnya bagaimanakah ? Dua benda dikatakan melakukan Tumbukan lenting sempurna jika Momentum dan Energi Kinetik kedua benda sebelum tumbukan = momentum dan energi kinetik setelah tumbukan. Dengan kata lain, pada tumbukan lenting sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik.
Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik berlaku pada peristiwa tumbukan lenting sempurna karena total massa 
Nah, benda-benda yang mengalami Tumbukan Lenting Sempurna tidak menghasilkan bunyi, panas atau bentuk energi lain ketika terjadi tumbukan. Tidak ada Energi Kinetik yang hilang selama proses tumbukan. Dengan demikian, kita bisa mengatakan bahwa pada peritiwa Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Energi Kinetik.
Apakah tumbukan lenting sempurna dapat kita temui dalam kehidupan sehari-hari ? Tidak…. Tumbukan lenting sempurna merupakan sesuatu yang sulit kita temukan dalam kehidupan sehari-hari. Paling tidak ada ada sedikit energi panas dan bunyi yang dihasilkan ketika terjadi tumbukan. Salah satu contoh tumbukan yang mendekati lenting sempurna adalah tumbukan antara dua bola elastis, seperti bola billiard. Untuk kasus tumbukan bola billiard, memang energi kinetik tidak kekal tapi energi total selalu kekal. Lalu apa contoh Tumbukan lenting sempurna ? contoh jenis tumbukan ini tidak bisa kita lihat dengan mata telanjang karena terjadi pada tingkat atom, yakni tumbukan antara atom-atom dan molekul-molekul. Istirahat dulu ah…
Sekarang mari kita tinjau persamaan Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik pada perisitiwa Tumbukan Lenting Sempurna. Untuk memudahkan pemahaman dirimu, perhatikan gambar di bawah.
< ![endif]-->

Dua benda, benda 1 dan benda 2 bergerak saling mendekat. Benda 1 bergerak dengan kecepatan v1 dan benda 2 bergerak dengan kecepatan v2. Kedua benda itu bertumbukan dan terpantul dalam arah yang berlawanan. Perhatikan bahwa kecepatan merupakan besaran vektor sehingga dipengaruhi juga oleh arah. Sesuai dengan kesepakatan, arah ke kanan bertanda positif dan arah ke kiri bertanda negatif. Karena memiliki massa 
Secara matematis, Hukum Kekekalan Momentum dirumuskan sebagai berikut :
< ![endif]-->

Keterangan :
m1 = massa benda 1, m2 = massa 
v1 = kecepatan benda sebelum tumbukan dan v2 = kecepatan benda 2 Sebelum tumbukan
v’1 = kecepatan benda Setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan
Jika dinyatakan dalam momentum,
m1v1 = momentum benda 1 sebelum tumbukan, m1v’1 = momentum benda 1 setelah tumbukan
m2v2 = momentum benda 2 sebelum tumbukan, m2v’2 = momentum benda 2 setelah tumbukan
Pada Tumbukan Lenting Sempurna berlaku juga Hukum Kekekalan Energi Kinetik. Secara matematis dirumuskan sebagai berikut :

< ![endif]-->
Kita telah menurunkan 2 persamaan untuk Tumbukan Lenting Sempurna, yakni persamaan Hukum Kekekalan Momentum dan Persamaan Hukum Kekekalan Energi Kinetik. Ada  suatu hal yang menarik, bahwa apabila hanya diketahui massa 
Sekarang kita tulis kembali persamaan Hukum Kekekalan Momentum :

< ![endif]-->
Kita tulis kembali persamaan Hukum Kekekalan Energi Kinetik :
< ![endif]-->


< ![endif]-->
Kita tulis kembali persamaan ini menjadi :

< ![endif]-->
Ini merupakan salah satu persamaan penting dalam Tumbukan Lenting sempurna, selain persamaan Kekekalan Momentum dan persamaan Kekekalan Energi Kinetik. Persamaan 3 menyatakan bahwa pada Tumbukan Lenting Sempurna, laju kedua benda sebelum dan setelah tumbukan sama besar tetapi berlawanan arah, berapapun massa 
Koofisien elastisitas Tumbukan Lenting Sempurna
Wah, istilah baru lagi ne… apaan sie koofisien elastisitas ? sebelum gurumuda menjelaskan apa itu koofisien elastisitas, mari kita obok2 lagi rumus fisika. Kali ini giliran persamaan 3…
Kita tulis lagi persamaan 3 :

< ![endif]-->
Perbandingan negatif antara selisih kecepatan benda setelah tumbukan dengan selisih kecepatan benda sebelum tumbukan disebut sebagai koofisien elatisitas alias faktor kepegasan (dalam buku Karangan Bapak Marthen Kanginan disebut koofisien restitusi). Untuk Tumbukan Lenting Sempurna, besar koofisien elastisitas = 1. ini menunjukkan bahwa total kecepatan benda setelah tumbukan = total kecepatan benda sebelum tumbukan. Lambang koofisien elastisitas adalah e. Secara umum, nilai koofisien elastisitas dinyatakan dengan persamaan :

< ![endif]-->
e = koofisien elastisitas = koofisien restitusi, faktor kepegasan, angka kekenyalan, faktor keelastisitasan
TUMBUKAN LENTING SEBAGIAN
Pada pembahasan sebelumnya, kita telah belajar bahwa pada Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekakalan Energi Kinetik. Nah, bagaimana dengan tumbukan lenting sebagian ?
Pada tumbukan lenting sebagian, Hukum Kekekalan Energi Kinetik tidak berlaku karena ada perubahan energi kinetik terjadi ketika pada saat tumbukan. Perubahan energi kinetik bisa berarti terjadi pengurangan Energi Kinetik atau penambahan energi kinetik. Pengurangan energi kinetik terjadi ketika sebagian energi kinetik awal diubah menjadi energi lain, seperti energi panas, energi bunyi dan energi potensial. Hal ini yang membuat total energi kinetik akhir lebih kecil dari total energi kinetik awal. Kebanyakan tumbukan yang kita temui dalam kehidupan sehari-hari termasuk dalam jenis ini, di mana total energi kinetik akhir lebih kecil dari total energi kinetik awal. Tumbukan antara kelereng, tabrakan antara dua kendaraan, bola yang dipantulkan ke lantai dan lenting ke udara, dll.
Sebaliknya, energi kinetik akhir total juga bisa bertambah setelah terjadi tumbukan. Hal ini terjadi ketika energi potensial (misalnya energi kimia atau nuklir) dilepaskan. Contoh untuk kasus ini adalah peristiwa ledakan.
Suatu tumbukan lenting sebagian biasanya memiliki koofisien elastisitas (e) berkisar antara 0 sampai 1. Secara matematis dapat ditulis sebagai berikut :

< ![endif]-->
Bagaimana dengan Hukum Kekekalan Momentum ? Hukum Kekekalan Momentum tetap berlaku pada peristiwa tumbukan lenting sebagian, dengan anggapan bahwa tidak ada gaya 
TUMBUKAN TIDAK LENTING SAMA SEKALI
Bagaimana dengan tumbukan tidak lenting sama sekali ? suatu tumbukan dikatakan Tumbukan Tidak Lenting sama sekali apabila dua benda yang bertumbukan bersatu alias saling menempel setelah tumbukan. Salah satu contoh populer dari tumbukan tidak lenting sama sekali adalah pendulum balistik. Pendulum balistik merupakan sebuah alat yang sering digunakan untuk mengukur laju proyektil, seperti peluru. Sebuah balok besar yang terbuat dari kayu atau bahan lainnya digantung seperti pendulum. Setelah itu, sebutir peluru ditembakkan pada balok tersebut dan biasanya peluru tertanam dalam balok. Sebagai akibat dari tumbukan tersebut, peluru dan balok bersama-sama terayun ke atas sampai ketinggian tertentu (ketinggian maksimum). Lihat gambar di bawah…

< ![endif]-->
Apakah pada Tumbukan Tidak Lenting Sama sekali berlaku hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik ? 
Perhatikan gambar di atas. Hukum kekekalan momentum hanya berlaku pada waktu yang sangat singkat ketika peluru dan balok bertumbukan, karena pada saat itu belum ada gaya 
m1v1 + m2v2 = m1v’1 + m2v’2
m1v1 + m2(0) = (m1 + m2) v’
m1v1 = (m1 + m2) v’ < ![endif]-->—- < ![endif]-->persamaan 1
Apakah setelah balok mulai bergerak masih berlaku hukum Kekekalan Momentum ? Tidak…. Mengapa tidak ? ketika balok (dan peluru yang tertanam di dalamnya) mulai bergerak, akan ada gaya  luar yang bekerja pada balok dan peluru, yakni gaya Gaya gaya 
Lalu bagaimana kita menganalisis gerakan balok dan peluru setelah tumbukan ?
Nah, masih ingatkah dirimu pada Hukum Kekekalan Energi Mekanik ? kita dapat menganalisis gerakan balok dan peluru setelah tumbukan menggunakan hukum Kekekalan Energi Mekanik. Ketika balok mulai bergerak setelah tumbukan, sedikit demi sedikit energi kinetik berubah menjadi energi potensial gravitasi. Ketika balok dan peluru mencapai ketinggian maksimum (h), seluruh Energi Kinetik berubah menjadi Energi Potensial gravitasi. Dengan kata lain, pada ketinggian maksimum (h), Energi Potensial gravitasi bernilai maksimum, sedangkan EK = 0.
Kita turunkan persamaannya ya 

Catatan : 
Ketika balok dan peluru tepat mulai bergerak dengan kecepatan v’, h1 = 0. Pada saat balok dan peluru berada pada ketinggian maksimum, h2 = h dan v2 = 0.
Persamaan Hukum Kekekalan Energi Mekanik untuk kasus tumbukan tidak lenting sama sekali.
EM1 = EM2
EP1 + EK1 = EP2 + EK2 
0 + EK1 = EP2 + 0
½ (m1 + m2)v’2 = (m1 + m2) g h < ![endif]-->< ![endif]-->— persamaan 2
Jangan dihal ya… dipahami saja
Hukum Kekekalan Momentum
- Sunday Nov 9,2008 12:12 AM
- By san
- In Impuls dan Momentum
Pada pokok bahasan Momentum dan Impuls, kita telah berkenalan dengan konsep momentum serta pengaruh momentum benda pada peristiwa tumbukan. Pada kesempatan ini kita akan meninjau momentum benda ketika dua buah benda saling bertumbukan. Ingat ya, momentum merupakan hasil kali antara massa massa massa 
 Pernahkah anda menonton permainan biliard ? lebih baik lagi jika dirimu adalah pemain biliard
Pernahkah anda menonton permainan biliard ? lebih baik lagi jika dirimu adalah pemain biliard  tuh gambarnya di samping kiri… biasanya pada permainan billiard, kita berusaha untuk memasukan bola ke dalam lubang. Bola yang menjadi target biasanya diam. Jika anda perhatikan secara cermat, kecepatan bola biliard yang disodok menuju bola biliard target menjadi berkurang setelah kedua bola biliard bertumbukan. Sebaliknya, setelah bertumbukan, bola biliard yang pada mulanya diam menjadi bergerak. Berhubung
tuh gambarnya di samping kiri… biasanya pada permainan billiard, kita berusaha untuk memasukan bola ke dalam lubang. Bola yang menjadi target biasanya diam. Jika anda perhatikan secara cermat, kecepatan bola biliard yang disodok menuju bola biliard target menjadi berkurang setelah kedua bola biliard bertumbukan. Sebaliknya, setelah bertumbukan, bola biliard yang pada mulanya diam menjadi bergerak. Berhubung  bola billiard target
bola billiard target Nah, sekarang pahami penjelasan gurumuda ini baik2 ya….. Pada saat sebelum tumbukan, bola billiard target diam sehingga momentumnya = 0, sedangkan bola billiard yang disodok bergerak dengan kecepatan tertentu; bola billiard yang disodok memiliki momentum. Setelah terjadi tumbukan, kecepatan bola billiard yang disodok berkurang; karenanya momentumnya juga berkurang. Sebaliknya, bola billiard target yang pada mulanya diam menjadi bergerak setelah terjadi tumbukan. Karena bergerak maka kita bisa mengatakan bahwa momentum bola billiard target “bertambah”. Dapatkah kita menyimpulkan bahwa jumlah momentum kedua bola billiard tersebut sebelum tumbukan = jumlah momentum kedua bola billiard setelah tumbukan ?
Jika bingung, dibaca perlahan-lahan sambil dipahami ya…. bagi yang belum pernah melihat atau bermain bola billiard, anda pasti kebingungan dengan penjelasan di atas. Oleh karena itu, segera beli dua buah kelereng pada warung atau toko terdekat…. dan lakukan percobaan berikut. Letakkan sebuah kelereng pada permukaan lantai yang datar. Setelah itu, tembakkan kelereng yang diam tersebut menggunakan kelereng lainnya dari jarak tertentu. Jika meleset, ulangi sampai kedua kelereng bertumbukan. Amati secara saksama kecepatan gerak kelereng tersebut. Setelah kedua kelereng bertumbukan, kelereng yang pada mulanya diam (tidak memiliki momentum) pasti bergerak (memiliki momentum). Sebaliknya, kelereng yang anda kutik tadi pasti kecepatannya berkurang setelah tumbukan (momentumnya berkurang). Dengan demikian kita bisa mengatakan bahwa momentum kelereng yang dikutik berkurang karena sebagian momentumnya berpindah ke kelereng target yang pada mulanya diam. Dapatkah kita menyimpulkan bahwa jumlah momentum kedua kelereng sebelum tumbukan = jumlah momentum kedua kelereng setelah tumbukan ?
Alangkah baiknya jika dirimu melakukan percobaan menumbukkan dua bola (mirip bola billiard) di atas permukaan meja getar. Syukur kalau di laboratorium sekolah-mu ada meja getar. Pada percobaan menumbukan dua bola di atas permukaan meja getar, kita mengitung kecepatan kedua bola sebelum dan setelah tumbukan. Massa 
Jika di laboratorium sekolah anda tidak ada meja getar, coba pahami ilustrasi bola biliard atau kelereng di atas secara saksama. Jika sudah paham, anda pasti setuju kalau gurumuda mengatakan bahwa jumlah momentum kedua benda sebelum tumbukan = jumlah momentum kedua benda setelah tumbukan. Pada ilustrasi di atas, sebelum tumbukan salah satu benda diam. Pada dasarnya sama saja bila dua benda sama-sama bergerak sebelum tumbukan. Kecepatan gerak kedua benda tersebut pasti berubah setelah tumbukan, sehingga momentum masing-masing benda juga mengalami perubahan. Kecuali jika massa 
Penjelasan panjang lebar dan bertele-tele di atas hanya mau mengantar dirimu untuk memahami inti pokok bahasan ini, yakni Hukum Kekekalan Momentum. Tidak peduli berapapun massa gaya  luar alias gaya gaya 

< ![endif]-->
Jika dua benda yang bertumbukan diilustrasikan dengan gambar di atas, maka secara matematis, hukum kekekalan momentum dinyatakan dengan persamaan :

< ![endif]-->
Keterangan :
m1 = massa  benda 1, m2 = massa 
Jika dinyatakan dalam momentum, maka :
m1v1 = momentum benda 1 sebelum tumbukan, m2v2 = momentum benda 2 sebelum tumbukan, m1v‘1 = momentum benda 1 setelah tumbukan, m2v‘2 = momentum benda 2 setelah tumbukan
Perlu anda ketahui bahwa Hukum Kekekalan Momentum ditemukan melalui percobaan pada pertengahan abad ke-17, sebelum eyang Newton  merumuskan hukumnya tentang gerak (mengenai Hukum II Newton 
Kita tulis kembali persamaan hukum II Newton :

< ![endif]-->
Ketika bola 1 dan bola 2 bertumbukan, bola 1 memberikan gaya pada bola 2 sebesar F21, di mana arah gaya tersebut ke kanan (perhatikan gambar di bawah)

< ![endif]-->
Momentum bola 2 dinyatakan dengan persamaan :

< ![endif]-->
Berdasarkan Hukum III Newton (Hukum aksi-reaksi), bola 2 memberikan gaya gaya  reaksi = gaya gaya  reaksi berlawanan dengan arah gaya 
Momentum bola 1 dinyatakan dengan persamaan :


< ![endif]-->
< ![endif]-->
Ini adalah persamaan Hukum Kekekalan Momentum. Hukum Kekekalan Momentum berlaku jika gaya gaya gaya 

< ![endif]-->
Hal ini menunjukkan bahwa apabila gaya gaya  luar (gaya-gaya yang diberikan oleh benda di luar sistem), sehingga gaya 
Dengan demikian, kita dapat menyimpulkan bahwa :
Jika tidak ada gaya 
Ini adalah pernyataan hukum kekekalan momentum
< ![endif]-->
Prinsip Kerja Roket
 Dorongan roket dan jet merupakan penerapan yang menarik dari hukum III Newton dan Kekekalan momentum. Roket memiliki tangki yang berisi bahan bakar hodrogen cair dan oksigen cair. Bahan bakar tersebut dibakar dalam ruang pembakaran sehingga menghasilkan gas lalu dibuang melalui mulut pipa yang terletak dibelakang roket. Akibatnya terjadi perubahan momentum pada gas selama selang waktu tertentu. Berdasarkan hukum II Newton, perubahan momentum selama suatu selang waktu tertentu =
Dorongan roket dan jet merupakan penerapan yang menarik dari hukum III Newton dan Kekekalan momentum. Roket memiliki tangki yang berisi bahan bakar hodrogen cair dan oksigen cair. Bahan bakar tersebut dibakar dalam ruang pembakaran sehingga menghasilkan gas lalu dibuang melalui mulut pipa yang terletak dibelakang roket. Akibatnya terjadi perubahan momentum pada gas selama selang waktu tertentu. Berdasarkan hukum II Newton, perubahan momentum selama suatu selang waktu tertentu = 
Daya
- Monday Oct 13,2008 04:44 PM
- By san
- In Usaha dan Energi
Pada pokok bahasan mengenai usaha dan energi, energi potensial dan energi kinetik serta pembahasan Hukum Kekekalan Energi, kita telah mempelajari konsep usaha tanpa memperhitungkan besaran waktu. Misalnya ketika mengangkat sebuah batu hingga ketinggian tertentu, kita membutuhkan sejumlah usaha. Batu yang kita angkat dengan sejumlah usaha tentu saja memerlukan selang waktu tertentu untuk berpindah dari kedudukan awal ke kedudukan akhir. Batu yang diangkat secara perlahan-lahan pasti memiliki waktu tempuh yang lebih lama dibandingkan dengan batu yang diangkat dengan cepat. Pada kesempatan ini kita akan mempelajari pokok bahasan Daya, sebuah besaran fisika yang menyatakan hubungan antara usaha dan waktu. Selamat belajar, semoga sukses…..
Dalam ilmu fisika, daya diartikan sebagai laju dilakukannya usaha atau perbandingan antara usaha dengan selang waktu dilakukannya usaha. Dalam kaitan dengan energi, daya diartikan sebagai laju perubahan energi. Sedangkan Daya rata-rata didefinisikan sebagai perbandingan usaha total yang dilakukan dengan selang waktu total yang dibutuhkan untuk melakukan usaha. Secara matematis, hubungan antara daya, usaha dan waktu dirumuskan sebagai berikut :
< ![endif]-->

Berdasarkan persamaan ini, dapat disimpulkan bahwa semakin besar laju usaha, semakin besar Daya. Sebaliknya, semakin kecil laju Usaha maka semakin kecil laju Daya. Yang dimaksudkan dengan laju usaha adalah seberapa cepat sebuah usaha dilakukan. Misalnya mobil A dan B memiliki massa yang sama menempuh suatu lintasan berjarak 1 km. Apabila mobil A menempuh lintasan tersebut dalam waktu yang lebih singkat dibandingkan dengan mobil B, maka ketika menempuh lintasan itu, daya mobil A lebih besar dari mobil B. Dengan kata lain, Mobil A memiliki laju perubahan energi kimia menjadi energi mekanik yang lebih besar dari pada mobil B.
Daya merupakan besaran skalar, besaran yang hanya mempunyai nilai alias besar, tidak mempunyai arah. Satuan Daya dalam Sistem Internasional adalah Joule/detik. Joule/detik juga biasa disebut Watt (disingkat W), untuk menghargai James Watt. Dalam sistem British, satuan daya adalah 1 pon-kaki/detik. Satuan ini terlalu kecil untuk kebutuhan praktis sehingga digunakan satuan lain yang lebih besar, yakni dayakuda atau horse power (disingkat hp). 1 dayakuda = 550 pon-kaki/detik = 764 watt = ¾ kilowatt.
Besaran Usaha juga bisa dinyatakan dalam satuan daya x waktu, misalnya kilowatt-jam alias KWH. Satu KWH adalah usaha yang dilakukan dengan laju tetap sebesar 1 Kilo Watt selama satu jam.
Daya seekor kuda menyatakan seberapa besar usaha yang dilakukan kuda per satuan waktu. Daya sebuah mesin menyatakan seberapa besar energi kimia atau listrik dapat diubah menjadi energi mekanik per satuan waktu.
Contoh soal 1 :
Seseorang yang bermassa 60 kg menaiki tangga selama 4 sekon. Apabila ketinggian vertikal tangga tersebut adalah 4 meter, hitunglah daya orang itu dalam satuan watt dan besarnya energi yang dibutuhkan untuk menaiki tangga. Anggap saja percepatan gravitasi (g) = 10 m/s2.
Panduan jawaban :

< ![endif]-->
Hasil perhitungan kita menunjukkan bahwa ketika menaiki tangga, orang tersebut mengubah energi kimia menjadi energi mekanik sebesar 2400 Joule. Ini belum termasuk energi panas yang dihasilkan ketika orang tersebut bergerak. Jadi ketika menaiki tangga, energi yang diubah orang tersebut lebih besar dari 2400 Joule.
